INVESTIGATIONS OF ANTIBACTERIAL ACTIVITY OF SOME ETHNOMEDICINAL PLANTS AGAINST CERTAIN PATHOGENIC BACTERIAL STRAINS

MANISHA YADAV^{a1}AND KHALID KAFEEL KHAN

Department of Botany, Shibli National College, Azamgarh , U.P., India ^aE-mail: manisha.mgs@gmail.com ^bE-mail: kafeel1864@gmail.com

ABSTRACT

50% (v/v) ethanolic and aqueous extracts of 20 plants were assayed for their antimicrobial activity against seven gram negative strains, *Pseudomonas aeruginosa*, *Pseudomonas testosteroni*, *Proteus mirabilis*, *Proteus vulgaris*, *Enterobacter aerogenes*, *Escherichia coli and Citrobacter freundii* and five gram positive strains, *Staphylococcus epidermidis*, *Bacillus cereus*, *Streptococcus fecalis*, *Streptococcus cremoris* and *Streptococcus agalactiae*. Maximum antibacterial activity was shown by the aqueous extracts of *Parthenium hysterophorus*. The aqueous extract of *Parthenium hysterophorus* inhibited the growth of seven strains among the 12 bacterial strains studied. It showed maximum activity against *Pseudomonas aeruginosa*. The aqueous extracts showed less activity than ethanol extracts. The antibacterial action of the extracts is more pronounced on gram positive than on gram negative bnacteria. *Boerrhavia diffusa* did not exhibit any antibacterial property and *Proteus vulgaris*, *Enterobacter aerogenes* and *Escherichia coli* were the most resistant bacterial strains investigated.

KEYWORDS: Antimicrobial, antibacterial, plant extracts, zone of inhibition

Infectious diseases are the world's leading cause of premature deaths, killing almost 50,000 people every day. In recent years, drug resistance to human pathogenic bacteria has been commonly reported from all over the world (Davis ,1994 and Robin et. al., 1998). The drugresistant bacteria and fungal pathogens have further complicated the treatment of infections diseases. In the present scenario of emergence of multiple drug resistance to human pathogenic organisms, this has necessitated a search for new antimicrobial substances from other sources including plants.

Traditionally used medicinal plants produce a variety of compounds of known therapeutic properties (Chopra et al., 1992). The substances that can either inhibit the growth of pathogens or kill them and have no or least toxicity to host cells are considered candidates for developing new antimicrobial drugs. In recent years an antimicrobial properties of medicinal plants are being increasingly reported from different parts of world (Saxena, 1997). In India, from ancient times different parts of medicinal plants have been used to cure specific ailments. Today there is widespread interest in drugs derived from plants. To determine the potential and promote the use of herbal medicine, it is essential to intensify the study of medicinal plants that find place in folklore. (Awadh et al., 2001 Nair and Chanda et al., 2005).

MATERIALS AND METHODS

Plants were collected for this study based on their medicinal uses. A total of 20 plants were screened. Different parts of the plants were collected, air dried and powdered in a homogenizer and 10g. of each plant parts was used for aqueous and ethanol extraction. The aqueous extraction was done in distilled water for 6 hours at slow heat. The extract was concentrated to 1/5th of the original volume for antimicrobial assay. For ethanol extraction, the sample was extracted in ethanol kept on a rotary shaker overnight. The filtrate was concentrated to 1/5th of the original volume and used for antimicrobial assay.

Seven gram negative strains, *Pseudomonas* aeruginosa, *Pseudomonas testosteroni*, *Proteus mirabilis*, *Proteus vulgaris*, *Enterobacter aerogenes*, *Escherichia coli* and *Citrobacter freundii* and five gram positive strains, *Staphylococcus epidermidis*, *Bacillus cereus*, *Streptococcus fecalis*, *Streptococcus cremoris* and *Streptococcus agalactiae* were used in the investigation of antibacterial activity. The media employed were Mueller Hinton agar No.2, Nutrient broth, MRS media, and MRS broth. Agar disc diffusion method (Bauer et al., 1966) were used for the antibacterial assay. The rest bacterial strains were maintained on agar slants at 40°C. The bacterial strains were recovered for testing by inoculating nutrient broth as well as MRS broth on rotary shaker for antibacterial evaluation, 100 µl of the inoculum size (1x108 cells/ml) was

¹Corresponding author

YADAV AND KHAN : INVESTIGATIONS OF ANTIBACTERIAL ACTIVITY OF SOME ETHNOMEDICINAL PLANTS AGAINST ...

taken. The plates were incubated at 37^oC for 24h. The result were obtained by measuring the zone of inhibition (mm).

RESULTS AND DISCUSSION

Maximum antibacterial activity was shown by the

aqueous extracts of *Parthenium hysterophorus*. None of the plant extracts could inhibit *Streptococcus agalactiae*, *Escherichia coli, Citrobacter freundii* and *Proteus vulgaris*. The aqueous extract of *Parthenium hysterophorus* inhibited the growth of seven strains among the 12 bacterial strains.It

S.N. 1 2 3	Botanical Name Anethum graveolens Annona squamosa	Family Apiaceae	Parts Used Leaf	Extract Aq	Pa -	Pt	Pm	Pv	Zone c Ea	of inhi Ec	bition Cf	(mm) Sc	Bc	Stf	Stc	Sta
1	Anethum graveolens	-				Pt	Pm	Pv	Ea	Ec		Sc			Stc	Sta
2	_	Apiaceae	Leaf	Aq	-	-										
	_						-	-	-	-	-	-	-	-	-	-
	Annona sauamosa			Et	-	1.5	1	-	-	-	-	7	-	-	-	-
		Annonaceae	Seeds	Aq	-	_	-	-	-	-	2	-	1.5	-	-	-
3	innona squanosa	1 millionaceue	Seedas	Et	-	-	_	-	-	-	-	-	-	-	_	_
5	Asparagus racemosus	Liliaceae	Leaf	Aq	-	_		-	_	-	-	_	2.7	_	-	-
	Aspurugus rucemosus	Linaceae	Leai	-		_				_				-		
	D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NT / '	T C	Et	-		-	-	-		-	-	-		-	-
4	Boerrhavia diffusa	Nyctaginaceae	Leaf	Aq	-	-	-	-	-	-	-	-	-	-	-	-
				Et	-	-	-	-	-	-	-	-	-	-	-	-
5	Boerrhavia chinensis	Nyctaginaceae	Leaf	Aq	-	-	-	-	-	-	-	-	2	3.5	9.2	-
			_	Et	-	-	-	-	-	-	-	-	-	-	-	-
6	Carica papaya	Caricaceae	Leaf	Aq	15.7	-	-	-	-	-	-	-	-	8	-	-
				Et	-	-	2	-	-	-	-	-	4.2	-	-	-
7	Commelina benghalensis	Commelinaceae	Leaf	Aq	-	5.5	-	-	-	-	-	-	-	-	-	-
				Et	-	-	1.5	-	-	-	-	-	2	-	-	-
8	Commiphora wightii	Burseraceae	Stem	Aq	-	-	1	-	-	-	-	11	1	2	7.2	-
				Et	1	-	2	-	-	-	-	-	1	-	-	-
9	Derris indica	Fabaceae	Leaf	Aq	10	-	2.2	-	-	-	-	-	8	-	-	-
		1 doubbub	Loui	Et	-	-	2.5	-	-	-	-	-	1	1.5	2.5	_
10	Emblica officinalis	Euphorbiaceae	Leaf	Aq	3	_	2.5	_	_	-	-	10	7.5	-	-	-
10	Emolica officinalis	Euphorotaceae	Leai	-		-		-								
				Et	7	21	7	3.5	3.5	-	-	7.5	8.5	-	-	-
11	Ficus benghalensis	Moraceae	Bark	Aq	-	-	-	-	-	-	-	-	-	-	-	-
				Et	2	-	1	-	2	-	-	-	6.5	-	-	-
12	Ficus racemosa	Moraceae	Bark	Aq	-	-	-	-	-	-	-	-	-	3	-	-
				Et	2.5	-	1	-	-	-	-	-	8.5	-	-	-
13	Ficus religiosa	Moraceae	Bark	Aq	-	-	-	-	-	-	-	-	-	-	-	-
				Et	-	-	-	-	-	-	-	-	12	-	-	3.5
14	Ficus lesila	Moraceae	Bark	Aq	-	-	-	-	-	-	-	-	2.5	-	-	-
				Et	3	-	1	-	2	-	-	1	6.5	-	-	9.5
15	Hibiscus sabdariffa	Malvaceae	Stem	Aq	-	-	-	-	-	-	-	-	-	24.5	-	9
				Et	-	1	-	-	-	-	-	-	7	-	-	-
16	Parthenium hysterophorus	Compositeae	Leaf	Aq	16	3.5	10.2	-	-	-	-	13	13	4	6	-
10	i un incentante registrer opprior aus	Compositeur	Loui	Et	-	-	3.5	-	-	-	1	5	7	-	-	-
17	Polyalthia longifolia	Annonaceae	Leaf		-	-	1.2	-	12	-	10	7.2	-	_	-	-
17	r olyalinia longijolia	Amonaceae	Leai	Aq Et										-	-	
			T C	Et	-	-	11	-	17.5	-	17	32	-	-	-	-
18	Pnuica granatum	Punicaceae	Leaf	Aq	-	-	3	-	-	-	-	3	6	-	-	-
				Et	6	2.5	9.5	2	-	-	-	12.5	-	-	-	-
	Ocimum sanctum	Labiateae	Leaf	Aq	-	-	-	-	-	-	-	-	2	-	-	-
19	1															
19				Et	-	-	2	-	-	1.5	2.5	1.5	3.5	-	-	-
	Zizyphees hummularia	Rhamnaceae	Leaf	Et Aq	-	-	2	-	-	1.5 -	2.5	1.5 -	3.5 2.5	-	-	-

Aq- Aqueous, Et- Ethanol, Pa- P. aeruginosa, Pt: P. testosteroni, Se: S. epidermidis, Pm: P. mirabilis, Pv: P. vulgaris Bc: B. cereus, Cf: C. freundii, Ea: E. aerogenes, Ec. E. coli, Stf: S.fecalis, Stc: S.cremoris, Sta: S.agalactiae showed maximum activity against *Pseudomonas* aeruginosa. The aqueous extracts of *Ficus benghalensis* and *Anethum graveolens* could not inhibit any of the bacterial strains, while the aqueous extracts *Boerrhavia* diffusa, Asparagus racemosus, *Ficus religiosa*, Commelina benghalensis, Ocimum sanctum and Zizyphus nummularia showed minimum antibacterial activity. *Hibiscus* sabdariffa showed maximum activity against Streptococcus fecalis.

The antibacterial activity of ethanol extract of various plants screened are shown in table-1. The ethanol extracts of Boerrhavia diffusa, Annona squamosa, Hibiscus sabdariffa and Asparagus racemosus showed the least antibacterial activity, while Emblica officinalis, Commiphora wightii, Ficus religiosa, Parthenium hysterophorus, Ficus benghalensis, Ficus tesila, Ficus racemosa, Derris indica, Carica papaya, Ocimum sanctum, Anethum graveolens, Punica granatum and Zizyphus nummularia, showed maximum antibacterial activity. The ethanol extracts of Parthenium hysterophorus, Ficus tesila, Derris indica and Zizyphus nummularia inhibited the growth of 9 strains. Parthenium hysterophorus showed maximum activity against Bacillus cereus. Ficus tesila was highly active against Streptococcus agalactiae, while Derris indica and Zizyphus nummularia were highly active against Streptococcus agalactiae and Enterobacter aerogenes, respectively. Aqueous extract showed less activity than ethanol extracts. The antibacterial action of the extracts is more pronounced on gram positive than on gram negative bacteria.

From the results, it can be concluded that the plant Boerrhavia diffusa did not exhibit any antibacterial property and Proteus vulgaris, Enterobacter aerogenes and Escherichia coli were the most resistant bacterial strains investigated.

REFERENCES

- Awadh Ali, Juelich N.A., Kusnick W.D. and Lindequist U., 2001. Screening of yemeni medicinal plants for antibacterial and cytotoxic activities. J Ethnopharmacol, 77:173-9.
- Bauer A.W., Kirby W.M.W., Sherris J.C. and Turck M., 1966. Antibiotic susceptibility testing by a standardized single disc method. American Journal of Clinical Pathology, 45: 494-496.
- Chopra R.N., Nayer S.L. and Chopra I.C., 1992. Glossary of Indian Medicinal Plants, 3rd ed. Council of Scientific and Industrial Research, New Delhi: 7-246.
- Davis J., 1994. Inactivation of antibiotic and the dissemination of resistance genes. Science **,264**: 375-382.
- Nair R., Kalariya T. and Chanda S., 2005. Antibacterial activity of some selected Indian medicinal flora. Turk. J. Biol., **29**: 1-7.
- Robin E.H., Anril W., Alexander M., Loeto M. and Keith K., 1998. Nasopharyngeal carriage and antimicrobial resistance in isolates of *streptococcus pneumoniae* and *Heamophilus influenzae*. Type b in children under 5 years of age in Botswana. International Journal of Infectious Diseases, **3** (1): 18-25.
- Saxena K., 1997. Antimicrobial screening of selected Medicinal Plants from India. Journal of Ethnopharmacology, 58(2): 75-83.